Abstract

Scale buildup on water-side heat transfer surfaces poses a potential operating challenge for steam-assisted gravity drainage (SAGD) boilers used in the production of bitumen since produced water, which has a high dissolved solid content, is recycled. Scale from deposition of dissolved solids on boiler tubes acts as a thermal insulating layer, decreasing heat transfer and lowering boiler efficiency. Understanding scale deposit composition on heat transfer surfaces is beneficial in the determination of adequate boiler maintenance practices and operating parameters. This research determined the effect of feedwater pH (7.5, 9.0, and 10.0) on scale composition resulting from deposition of dissolved solids under commercially relevant boiler operating conditions at 8.96 MPa (1300 psig) and 37.86 kW/m2 (12,000 Btu/h ft2). Scale deposits were analytically investigated using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS), powder X-ray diffraction (XRD), and Raman spectroscopy. At feedwater pH values of 7.5 and 9.0, anhydrite (CaSO4), xonotlite (Ca6Si6O17(OH)2), and pectolite (NaCa2Si3O8(OH)) were detected. At the pH of 10.0, xonotlite and pectolite were identified in the absence of anhydrite. Furthermore, the magnesium silicate phase, serpentine (Mg3Si2O5(OH)4), was also postulated to be present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call