Abstract

X-ray powder diffraction (XRD) has been used for several decades to identify and measure the mass fractions of various crystalline phases in portland cement. More recently, a combination of scanning electron microscopy with X-ray microanalysis (SEM/XMA) and image processing has been shown to enable the quantitative characterization of microstructural features in these materials. Each technique can furnish some information that is not accessible from the other. For example, SEM/XMA can identify the microstructural location and morphology of calcium sulfate minerals, while only XRD can determine the relative abundance of the different forms of calcium sulfate, such as gypsum (CaSO4 · 2H2O), bassanite , and anhydrite (CaSO4). This document describes how XRD and SEM/XMA can be used together to establish and validate the portland cement phase composition and microstructure. Particular emphasis is laid on step-by-step procedures and best practices for XRD specimen preparation, data collection, and intepretation. Similar detail has been given recently for SEM/XMA [Stutzman et al., NIST Tech Note 1877, U.S. Department of Commerce, April 2015]. The methods are demonstrated for three portland cement powders, through which apparent discrepancies between the results of the two methods are identified and procedures are described for resolving the discrepancies and quantifying uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.