Abstract
BackgroundThe act of swallowing is a complex neuromuscular function that is processed in a distributed network involving cortical, subcortical and brainstem structures. Difficulty in swallowing arises from a variety of neurologic diseases for which therapeutic options are currently limited. Pharyngeal electrical stimulation (PES) is a novel intervention designed to promote plastic changes in the pharyngeal motor cortex to aid dysphagia rehabilitation. In the present study we evaluate the effect of PES on cortical swallowing network activity and associated changes in swallowing performance. MethodsIn a randomized, crossover study design 10min of real (0.2-ms pulses, 5Hz, 280V, stimulation intensity at 75% of maximum tolerated threshold) or sham PES were delivered to 14 healthy volunteers in two separate sessions. Stimulation was delivered via a pair of bipolar ring electrodes mounted on an intraluminal catheter positioned in the pharynx. Before and after each intervention swallowing capacity (ml/s) was tested using a 150ml-water swallowing stress test. Event-related desynchronization (ERD) of cortical oscillatory activity during volitional swallowing was recorded applying whole-head magnetoencephalography before, immediately after and 45min past the intervention. ResultsA prominent reduction of ERD in sensorimotor brain areas occurred in the alpha and beta frequency ranges immediately after real PES but not after sham stimulation (p<0.05) and had faded after 45min. Volume per swallow and swallowing capacity significantly increased following real stimulation only. ConclusionAttenuation of ERD following PES reflects stimulation-induced increased swallowing processing efficiency, which is associated with subtle changes in swallowing function in healthy subjects. Our data contribute evidence that swallowing network organization and behavior can effectively be modulated by PES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.