Abstract
Anxiety is a complex disorder; thus, its mechanisms remain unclear. Zebrafish (Danio rerio) are a promising pharmacological model for anxiety research. Light/dark preference test is a behaviorally validated measure of anxiety in zebrafish; however, it requires pharmacological validation. We sought to evaluate the sensitivity of the light/dark preference test in adult zebrafish by immersing them in drug solutions containing clonazepam, buspirone, imipramine, fluoxetine, paroxetine, haloperidol, risperidone, propranolol, or ethanol. The time spent in the dark environment, the latency time to first crossing, and the number of midline crossings were analyzed. Intermediate concentrations of clonazepam administered for 600s decreased the time spent in the dark and increased locomotor activity. Buspirone reduced motor activity. Imipramine and fluoxetine increased time spent in the dark and the first latency, and decreased the number of alternations. Paroxetine did not alter the time in the dark; however, it increased the first latency time and decreased locomotor activity. Haloperidol decreased the time spent in the dark at low concentrations. Risperidone and propranolol did not change any parameters. Ethanol reduced the time spent in the dark and increased the number of crossings at intermediate concentrations. These results corroborate the previous work using intraperitoneal drug administration in zebrafish and rodents, suggesting that water drug delivery in zebrafish can effectively be used as an animal anxiety model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have