Abstract

Most patients with muscle-invasive bladder cancer (MIBC) are not cured with platinum chemotherapy. Up-regulation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) is a major mechanism underlying chemoresistance, suggesting that its pharmacological inhibition may increase platinum efficacy. NF-κB signaling was investigated in two patient cohorts. The Cancer Genome Atlas (TCGA) was used to correlate NF-κB signaling and patient survival. The efficacy of cisplatin plus the NF-κB inhibitor dimethylaminoparthenolide (DMAPT) versus cisplatin or DMAPT alone was tested in vitro. Xenografted and immunocompetent MIBC mouse models were studied in vivo. Platinum-naive claudin-low MIBC showed constitutive NF-κB signaling and this was associated with reduced disease-specific survival in TCGA patients. Chemotherapy up-regulated NF-κB signaling and chemoresistance-associated genes, including SPHK1, PLAUR, and SERPINE1. In mice, DMAPT significantly improved the efficacy of cisplatin in both models. The combination preserved body weight, renal function, and morphology, reduced musclefatigue and IL-6 serum levels, and did not aggravate immuno-hematological toxicity compared with cisplatin alone. These data provide a rationale for combining NF-κB inhibition with platinum-based chemotherapy and conducting a clinical trial in MIBC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.