Abstract

Physiological modulation of melanocortin-4 receptor (MC4R) signaling by MRAP2 proteins plays an indispensable role in appetite control and energy homeostasis in the central nervous system. Great interspecies differences of the interaction and regulation of melanocortin receptors by MRAP protein family have been reported in several diploid vertebrates but never been investigated in the tetrapod amphibian Xenopus laevis. Here, we performed phylogenetic and synteny-based analyses to explore the evolutionary aspects of dual copies of X. laevis MC4R (xlMC4R) and MRAP2 (xlMRAP2) proteins. Our data showed that xlMRAPs directly interacted with xlMC4Rs on the cell surface as a functional antiparallel dimeric topology and pharmacological studies suggested a homology specific regulatory pattern of the melanocortin system in X. laevis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.