Abstract
Jadomycin B, a natural product isolated from Streptomyces venezuelae, exerts an anti-cancer effect on human triple negative breast cancer cells in vitro and has anti-tumoral effects in vivo in animal models of breast cancer. One proposed mechanism for this anti-cancer effect is through interaction with topoisomerase 2 (TOP2). Based on the previously described interactions between jadomycin B and TOP2 we hypothesized that jadomycin B will act additively with TOP2 poisons and produce a similar functional outcome in eliciting cell cycle arrest. Combined treatments of jadomycin B and the TOP2 poisons doxorubicin or mitoxantrone produced moderately synergistic to additive cytotoxicity (combination index values ranging from 0.72-0.94) in MDA-MB-231 cells. In comparison, combined mitoxantrone and doxorubicin produced additive cytotoxicity (combination index values 0.96-1.11). Jadomycin B combined with the proteosome inhibitor MG132 had additive cytotoxicity (combination index values 0.76-1.18). In contrast, mitoxantrone or doxorubicin cytotoxicity was antagonized by MG132 (combination index values 1.21-2.31). Jadomycin B treatment arrested cells in S-phase (P=0.0024) as opposed to mitoxantrone which caused G2/M-phase arrest (P<0.0001). In conclusion, jadomycin B interacts differently than known TOP2 poisons in combination, supporting a novel pharmacological mechanism(s) of action for jadomycin B cytotoxicity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have