Abstract
Background and purposeProtein modification by small ubiquitin-like modifier (SUMO) plays a critical role in the pathogenesis of heart diseases. The present study was designed to determine whether ginkgolic acid (GA) as a SUMO-1 inhibitor exerts an inhibitory effect on cardiac fibrosis induced by myocardial infarction (MI). Experimental approachGA was delivered by osmotic pumps in MI mice. Masson staining, electron microscopy (EM) and echocardiography were used to assess cardiac fibrosis, ultrastructure and function. Expression of SUMO-1, PML, TGF-β1 and Pin1 was measured with Western blot or Real-time PCR. Collagen content, cell viability and myofibroblast transformation were measured in neonatal mouse cardiac fibroblasts (NMCFs). Promyelocytic leukemia (PML) protein was over-expressed by plasmid transfection. Key resultsGA improved cardiac fibrosis and dysfunction, and decreased SUMO-1 expression in MI mice. GA (>20 μM) inhibited NMCF viability in a dose-dependent manner. Nontoxic GA (10 μM) restrained angiotensin II (Ang II)-induced myofibroblast transformation and collagen production. GA also inhibited expression of TGF-β1 mRNA and protein in vitro and in vivo. GA suppressed PML SUMOylation and PML nuclear body (PML-NB) organization, and disrupted expression and recruitment of Pin1 (a positive regulator of TGF-β1 mRNA), whereas over-expression of PML reversed that. Conclusions and implicationsInhibition of SUMO-1 by GA alleviated MI-induced heart dysfunction and fibrosis, and the SUMOylated PML/Pin1/TGF-β1 pathway is crucial for GA-inhibited cardiac fibrosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have