Abstract

Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with poor prognosis and dismal patient survival. Although protein kinase D (PKD) isoforms, especially PKD2 and PKD3 are critical for many cellular and physiological functions involved in carcinogenesis including cell proliferation and angiogenesis, their role in human EOC remains unknown. Towards the goal to identify novel prognostic biomarker and therapeutic interventions against EOC, this study aimed to elucidate the molecular roles of PKD2, PKD3 and highly selective, pan-PKD inhibitor CRT0066101 in this lethal pathology. Our results indicated that inactivation of PKD2 and PKD3 by 1 μM CRT0066101 suppressed EOC cell proliferation, colony formation, cell migration and invasion. Moreover, CRT0066101 induced apoptosis and inhibited cell cycle at G2-M phase in EOC cells. Genetic knockdown of PKD2 and PKD3 confirmed the anti-carcinogenic effects of CRT0066101 against EOC. The anti-cancer phenotype of EOC cells resulted from CRT0066101-mediated PKD2 and PKD3 inactivation or genetic depletion was, in part, mediated by transcription factor Runx2 as abrogation of PKD2 and PKD3 caused downregulation of Runx2 and its downstream target genes including osteopontin, focal adhesion kinase and ERK1/2. Moreover, overexpression of a constitutively active PKD2 augmented the expression levels of phosphor-ERK1/2T202/Y204, Runx2 and its downstream targets. Mechanistically, PKD2 and PKD3 positively regulated Runx2 via MAPK/ERK1/2 pathway and promoted EOC. Taken together, our results indicated that PKD2/3/ERK1/2/Runx2 signalling axis might be a novel drug target against EOC and CRT0066101 could be developed as a promising therapeutic choice against this lethal pathology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.