Abstract
Endogenous circadian rhythms govern behavior and physiology, while circadian disruption is an environmental factor that impacts cognition by altering the circadian clock at a molecular level. We modeled the effects of 2 sources of circadian disruption – activity occurring during typical rest periods and untimely light exposure – to evaluate the effects of circadian disruption on behavior and underlying neurochemistry. Firstly, adult Long-Evans rats of both sexes were maintained on a 12 h:12 h light:dark cycle and tested using a 5-choice serial reaction time task (5-CSRTT) under 3 conditions: 4 h into the dark phase with no exposure to ambient light during testing (control), 4 h into the dark phase with exposure to ambient light during testing, and 4 h into the light phase. Both models resulted in impulsive behavior and reduced attention compared to control. We established that changes in the diurnal expression pattern occur in the clock gene Period 2 (Per2) in the light phase-tested model. Choline acetyltransferase (Chat) and Dopamine receptor 1 (Drd1) showed rhythmic expression with peak expression during the dark phase regardless of light-testing condition. Next, we performed drug challenges in a new rat cohort to examine the interaction between the cholinergic and dopaminergic neurotransmitter systems in regulating the behavioral changes caused by circadian disruption. We administered the cholinergic agonist nicotine and either the dopamine-1 receptor (DR1) antagonist SCH23390 or the DR2 antagonist eticlopride under the 3 circadian conditions to identify differential drug responses between treatment groups. Rats in both models demonstrated increased sensitivity to nicotine as compared to control, while SCH23390 and eticlopride ameliorated the effect of nicotine on 5-CSRTT performance in both models. Our study is the first to identify detrimental effects of both models of circadian disruption on impulsive behavior, and that the effects of circadian disruption are mediated by an interaction between cholinergic and dopaminergic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.