Abstract
Levodropropizine is a non-narcotic, non-centrally acting antitussive that inhibits the cough reflex triggered by neuropeptides. Despite the active clinical application of levodropropizine, the exploration of its inter-individual pharmacokinetic diversity and of factors that can interpret it is lacking. The purpose of this study was to explore effective covariates associated with variation in the pharmacokinetics of levodropropizine within the population and to perform an interpretation of covariate correlations from a therapeutic perspective. The results of a levodropropizine clinical trial conducted on 40 healthy Korean men were used in this pharmacokinetic analysis, and the calculated pharmacokinetic and physiochemical parameters were screened for effective correlations between factors through heatmap and linear regression analysis. Along with basic compartmental modeling, a correlation analysis was performed between the model-estimated parameter values and the discovered effective candidate covariates for levodropropizine, and the degree of toxicity and safety during the clinical trial of levodropropizine was quantitatively monitored, targeting the hepatotoxicity screening panel. As a result, eosinophil level and body surface area (BSA) were explored as significant (p-value < 0.05) physiochemical parameters associated with the pharmacokinetic diversity of levodropropizine. Specifically, it was confirmed that as eosinophil level and BSA increased, levodropropizine plasma exposure increased and decreased, respectively. Interestingly, changes in an individual's plasma exposure to levodropropizine depending on eosinophil levels could be interpreted as a therapeutic advantage based on pharmacokinetic benefits linked to the clinical indications for levodropropizine. This study presents effective candidate covariates that can explain the inter-individual pharmacokinetic variability of levodropropizine and provides a useful perspective on the first-line choice of levodropropizine in the treatment of inflammatory respiratory diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have