Abstract
Isobolographic analysis was used to characterize the interactions between loreclezole (LCZ) and clonazepam (CZP), ethosuximide (ETS), phenobarbital (PB), and valproate (VPA) in suppressing pentylenetetrazole (PTZ)-induced seizures and in producing acute neurotoxic adverse effects in the chimney test in mice so as to identify optimum combinations. Moreover, protective indices (PIs) and benefit indices (BIs) were calculated so that a ranking in relation to advantageous combination could be established. Any pharmacokinetic contribution was ascertained by measurement of brain antiepileptic drug (AED) concentrations. All AED combinations comprising LCZ and CZP, ETS, PB, and VPA (at the fixed ratios of 1:3, 1:1, and 3:1) were additive in their seizure suppression. However, these interactions were complicated by changes in brain AED concentrations consequent to pharmacokinetic interactions. Thus, LCZ significantly increased total brain ETS concentrations (VPA, CZP, and PB concentrations were unaffected), and ETS decreased, and VPA increased, total brain LCZ concentrations. Only combinations of LCZ with CZP and PB were completely free of any pharmacokinetic interaction. Furthermore, in the chimney test, isobolographic analysis showed that the combination of LCZ and CZP, at the fixed ratio of 1:1, was supra-additive (synergistic, P < 0.05), whereas LCZ and ETS at fixed ratios of 1:3 and 1:1 were subadditive (antagonistic, P < 0.05). The remaining combinations of LCZ with CZP (1:3 and 3:1), ETS (3:1), PB (all fixed ratios of 1:3, 1:1, and 3:1), and VPA (at the fixed ratios of 1:3, 1:1, and 3:1) barely displayed additivity. In conclusion, BI, which is a measure of the margin of safety and tolerability of drugs in combination and comprises anticonvulsant and neurotoxic measures, was favorable for only one combination (LCZ and ETS at a fixed ratio of 1:3) with a value of 1.39. In contrast, LCZ and CZP constitute an unfavorable combination (BI = 0.61–1.01). The combinations of LCZ with PB or VPA do not offer any advantage as assessed by the parameters (BI range: 0.75–0.91) used in this study. However, these conclusions are confounded by the fact that LCZ is associated with significant pharmacokinetic interactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have