Abstract

CRLX101 is a nanopharmaceutical consisting of cyclodextrin-based polymer molecule and camptothecin. The CRLX101 nanoparticle is designed to concentrate and slowly release camptothecin in tumors over an extended period of time. Tumor biopsy and blood samples collected from patients with advanced solid malignancies before and after CRLX101 treatment are subjected to immunohistochemistry and pharmacogenomics. The expression of Topoisomerase-1, Ki-67, CaIX, CD31 and VEGF decreased after CRLX101 treatment. The expressions of these proteins are inversely proportional with survival duration of the patients. The Drug Metabolism Enzymes and Transporters (DMET) array shows an allele frequency in patients similar to global populations with none of the SNPs associated with toxicity. The results suggest that the observed lower toxicity is not likely to be due to different genotypes in SNPs. CRLX101 demonstrates a promising anti-tumor activity in heavily pre-treated or treatment-refractory solid tumor malignancies presumably by inhibition of proliferation and angiogenesis correlating with tumor growth inhibition. From the Clinical EditorIn this cancer treatment study clinical samples collected from patients were subjected to immunohistochemistry and pharmacogenomics. The expressions of key proteins that are inversely proportional with survival duration of the patients decreased after treatment with CRLX101, a camptothecin slow-release nanoparticle conjugate. This anti-tumor activity in heavily pre-treated and treatment resistant solid tumors, promises a novel therapeutic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call