Abstract
Due to the large amounts of pharmaceuticals and personal care products (PPCPs) currently being consumed and released into the environment, this study provides a comprehensive analysis of pharmaceutical pollution in both raw and treated water from full-scale drinking water treatment plants nationwide. Our investigation revealed that 30 out of 37 PPCPs were present in raw water with mean concentrations ranging from 0.01–131 ng/L. The raw water sources, surface water (ND – 147 ng/L), subsurface water (ND – 123 ng/L) and reservoir sources (ND – 135 ng/L) exhibited higher mean concentration levels of pharmaceutical residues compared to groundwater sources (ND – 1.89 ng/L). Meanwhile, in treated water, 17 of the 37 analyzed PPCPs were present with carbamazepine, clarithromycin, fluconazole, telmisartan, valsartan, and cotinine being the most common (detection frequency > 40 %), and having mean concentrations of 1.22, 0.12, 3.48, 40.1, 6.36, and 3.73 ng/L, respectively. These findings highlight that, while water treatment processes are effective, there are some persistent compounds that prove challenging to fully eliminate. Using Monte Carlo simulations, risk assessment indicated that most of these compounds are likely to have negligible impact on human health, except for the antihypertensives. Telmisartan was identified as posing the highest ecological risk (RQ > 1), warranting further investigation, and monitoring. The study concludes by prioritizing specific 14 pharmaceuticals, including telmisartan, clarithromycin, lamotrigine, cotinine, lidocaine, tramadol, and others, for future monitoring to safeguard both ecological and human health.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have