Abstract

PHAPI/pp32 is a tumor suppressor whose expression is altered in various human cancers. Although PHAPI possesses multiple biochemical activities, the molecular basis for its tumor-suppressive function has remained obscure. Recently we identified PHAPI as an apoptotic enhancer that stimulates apoptosome-mediated caspase activation. In this study, we defined the structural requirement for its activity to stimulate caspase activation using a series of truncation mutants of PHAPI. Further, utilizing these mutants, we provide evidence to support the model that the apoptotic activity of PHAPI is required for its tumor-suppressive capability. Consistently, pp32R1, a close homolog of PHAPI and yet an oncoprotein, is not able to stimulate caspase activation. A highly discrete region between these two proteins localizes to an essential caspase activation motif of PHAPI. Additionally, PHAPI is predominantly a nuclear protein, and it can translocate to the cytoplasm during apoptosis. Disruption of the nuclear localization signal of PHAPI caused a modest decrease of its tumor-suppressive function, indicating that nuclear localization of PHAPI contributes to, but is not essential for, tumor suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.