Abstract

To achieve safe and effective antitumor immunity, we constructed the M1-macrophage-membrane-coated nanoparticles [(C/I)BP@B-A(D)&M1m] having laser-responsive, size-changeable, on-demand drug release and prolonged circulation retention properties. (C/I)BP@B-A(D)&M1m delayed clearance by the phagocytic system and homed to tumor efficiently. Upon 650 nm laser irradiation, the hydrophobic core of the PEGylated bilirubin nanoparticles (BP) got disrupted, releasing small-sized deep-penetrating B-A(D) particles, photosensitive chlorin e6 (C), and tolerance-inducing indoleamine 2,3-dioxygenase inhibitor, indoximode (I). Treatment-induced immunogenic cell death and antitumor immunity, suppressing primary tumor growth in both 4T1 and B16F10 models without causing any adverse effects. Most importantly, it inhibited primary tumor recurrence as well as metastasis. Thus, this study provides a promising combinatorial strategy to trigger antitumor immunity in malignancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call