Abstract

For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.