Abstract

Soy protein isolate (SPI), beta-conglycinin (7S), and glycinin (11S) were subjected to pH-shifting treatments, that is, unfolding at pH 1.5 or 12.0 followed by refolding at pH 7.0, to induce molten globule structures. Treated samples were analyzed for protein solubility, thermal stability, and aggregation in 0, 0.1, and 0.6 M NaCl solutions at pH 2.0-8.0. The pH(12) shifting resulted in drastic increases (up to 2.5-fold) in SPI solubility in the pH 6.0-7.0 range, especially at 0 M NaCl. The pH(1.5) shifting had a generally lesser effect on solubility. 11S exhibited a solubility pattern similar to that of SPI, but the solubility of 7S was unaffected by pH shifting except at 0.6 M NaCl. The pH shifting, notably at pH 12.0, produced soluble, disulfide-linked polymers from 11S and reduced (P < 0.05) its enthalpy but not its temperature of denaturation. Soy proteins structurally altered by pH shifting had a reduced sensitivity to thermal aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.