Abstract

Emulsion polymerization is an efficient method for the production of new wax–hydrogel matrices of cetyl alcohol: stearic acid wax and acrylamide hydrogel using triethylamine (TEA) as an emulsifier. A cross-linking reaction occurred when a mixture of wax–hydrogel solution was irradiated with gamma rays at a dose of 20 kGy. The gelation percentage of the matrices (CtOH-StA/PAAm) was 86%, which indicates that a sufficiently high conversion occurred in these new wax–hydrogel matrices. The ability of PAAm and CtOH-StA/PAAm as an adsorbent for dye removal was investigated. The removal of three reactive dyes, namely Remazol Red (RR), Amido Black (AB), and Toluidine Blue (TB), from aqueous solutions depends on the pH of the dye solution. Removal efficiency was investigated by UV spectrophotometry, and the results showed the affinity of the wax hydrogel to adsorb TB was 98% after 320min. Fourier transform infrared–attenuated total reflectance spectra confirmed the cross-linking process involved between the chains of wax and hydrogel; furthermore, scanning electron microscopy images showed that the wax and hydrogel were completely miscible to form a single matrix. Swelling measurements showed the high affinity of adsorbed dyes from aqueous solutions at different pH values to the wax–hydrogel network; the highest swelling values of 13.05 and 8.24 (g/g) were observed at pH 10 and 6, respectively

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call