Abstract
Near-infrared (NIR) fluorophores with pH-responsive properties suggest merits in biological analyses. This work establishes a general and effective method to obtain pH-responsive NIR emissive gold nanoclusters by introducing aliphatic tertiary amine (TA) groups into the ligands. Computational study suggests that the pH-responsive NIR emission is associated with electronic structure change upon protonation and deprotonation of TA groups. Photo-induced electron transfer between deprotonated TA groups and the surface Au-S motifs of gold nanoclusters can disrupt the radiative transitions and thereby decrease the photoluminescence intensity in basic environments (pH=7-11). By contrast, protonated TA groups curb the electron transfer and restore the photoluminescence intensity in acidic environments (pH=4-7). The pH-responsive NIR-emitting gold nanoclusters serve as a specific and sensitive probe for the lysosomes in the cells, offering non-invasive emissions without interferences from intracellular autofluorescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.