Abstract

Amine-based pharmaceuticals are a significant class of N-nitrosodimethylamine (NDMA) precursors. This study investigated the use of unactivated peroxymonosulfate (PMS) to control amine-based pharmaceuticals and their NDMA formation potential. Kinetic analysis and product identification revealed that sumatriptan and doxylamine primarily underwent reactions at their tertiary amine group, while ranitidine and nizatidine had both tertiary amine and thioether group as reaction sites. The NDMA formation from sumatriptan and doxylamine during post-chloramination was significantly reduced with the abatement of the parent contaminants, while the formation of NDMA remained high even if full abatement of ranitidine and nizatidine was achieved. Product formation kinetics and reference standard tests revealed the great contribution of transformation products to NDMA formation. Ranitidine could be oxidized to sulfoxide-type product ranitidine-SO and N-oxide type product ranitidine-NO. Ranitidine-SO exhibited a high NDMA yield comparable to that of ranitidine (>90%), while ranitidine-NO showed a low NDMA yield (2%). With further oxidation of ranitidine-SO at the tertiary amine group, NDMA formation was reduced by more than 90%. The underlying mechanism for the importance of the tertiary amine group in NDMA formation was demonstrated by quantum chemical calculation. These findings underscore the potential of PMS pre-oxidation on NDMA control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call