Abstract
We use molecular simulation to investigate the pH response of sequence-controlled polyampholyte brushes (PABs) with polymer chains consisting of alternating blocks of weakly acidic and basic monomers. Changes in the ionization state, height, lateral structure, and chain conformations of PABs with pH are found to differ qualitatively from those observed for polyelectrolyte brushes. Grafting density has a relatively modest effect on PAB properties. By contrast, monomer sequence strongly affects the pH response, with the extent of the response increasing with the block size. This trend is attributed to strong electrostatic attractions between oppositely charged blocks, which lead to an increase in chain backfolding as block size increases. This behavior is consistent with that observed for polyampholytes with similar monomer sequences in solution in previous studies. Our study shows that monomer sequence can be used to tune the pH response of weak PABs to generate stimuli-responsive surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.