Abstract

Molecular dynamics simulations are used to study the conformational behaviors of the flexible and semiflexible polyampholytes coated onto the internal surface of a spherical cavity. Dependences of the brush structure and the local conformation of grafted chains on the sequence of charged monomers, the grafting density, and the chain stiffness are addressed. In the range of parameters studied, it was found that a significant transition of the brush structure occurs due to the variation of the charged monomer sequence. As the number of repeat charged monomers increases, both the flexible and semiflexible polyampholyte brushes change to the collapsed conformation. The spherical concave geometry tends to exclude the conformation of chains perpendicular to the grafting surface for the semiflexible case. In addition, we find that most counterions are depleted in the polyampholyte brush due to the strong electrostatic correlation between the oppositely charged monomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.