Abstract
AbstractKanamycin A is a widely used antibiotic, although it has a narrow therapeutic window demanding highly accurate monitoring. The sensing of kanamycin A using aptamers is of great interest since aptamers can be used for continuous monitoring with a rapid response. While kanamycin has been the target for at least four previous aptamer selections, the binding affinities of the reported DNA aptamers are still sub‐optimal. All the previous aptamer selections were performed at pH 7.5 or higher. Given that kanamycin A has four amino groups with pKa values close to 7, we herein selected DNA aptamers for kanamycin A at both pH 6 and pH 8. The selection at pH 6 enriched aptamers although the pH 8 selection library remained highly diverse in the end. The best aptamer named KAN6‐1 showed a dissociation constant of around 320 nM measured using isothermal titration calorimetry in the selection buffer. In buffers without salt, binding can happen from pH 6 to 8. Specific binding was confirmed using mutation studies. A strand displacement assay was developed with a limit of detection (LOD) of 100 nM in buffer. Similar LOD values were also obtained in lake water and in 10 % human serum. Comparisons were also made with some previously reported DNA aptamers. This study shows the importance of pH value on the selection of aptamers and provides a new aptamer for kanamycin A detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have