Abstract
Nature has a remarkable ability to perform selective transformation of complex biological mixtures into desired products using enzymatic catalysts. We report the preparation of nanoparticle catalysts through molecular imprinting within cross-linked micelles. These catalysts were highly selective for their targeted substrates and could selectively hydrolyze less reactive acetals over more reactive ones even under basic conditions. Their catalytic activity and selectivity were tunable through rational postmodification of the active site. These properties enabled the nanoparticle catalysts to produce the desired β-nitro alcohol from a four-component acetal mixture in a tandem deprotection/Henry reaction that required incompatible acidic and basic catalysts in the two steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.