Abstract
Infectious diabetic wounds can result in severe injuries or even death. Biocompatible wound dressings offer one of the best ways to treat these wounds, but creating a dressing with a suitable hydrophilicity and biodegradation rate can be challenging. To address this issue, we used the electrospinning method to create a wound dressing composed of poly(glycerol sebacate) (PGS) and gelatin (Gel). We dissolved the PGS and Gel in acetic acid (75 v/v%) and added EDC/NHS solution as a crosslinking agent. Our measurements revealed that the scaffolds' fiber diameter ranged from 180.2 to 370.6 nm, and all the scaffolds had porosity percentages above 70%, making them suitable for wound healing applications. Additionally, we observed a significant decrease (p < 0.05) in the contact angle from 110.8° ± 4.3° for PGS to 54.9° ± 2.1° for PGS/Gel scaffolds, indicating an improvement in hydrophilicity of the blend scaffold. Furthermore, our cell viability evaluations demonstrated a significant increase (p < 0.05) in cultured cell growth and proliferation on the scaffolds during the culture time. Our findings suggest that the PGS/Gel scaffold has potential for wound healing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.