Abstract

Background:The most important risk that threatens the skin wounds is infections. Therefore, fabrication of a membrane as a wound dressing with the ability of antibiotic delivery in a proper delivery rate is especially important.Materials and Methods:Poly(glycerol sebacate) (PGS) was prepared from sebacic acid and glycerol with 1:1 ratio; then, it was added to gelatin in the 1:3 ratio and was dissolved in 80% (v/v) acetic acid, and finally, ciprofloxacin was added in 10% (w/v) of polymer solution. The gelatin/PGS membrane was fabricated using an electrospinning method. The membrane was cross-linked using ethyl-3-(3-dimethylaminopropyl) carbodiimide ethyl-3-(3-dimethylaminopropyl)carbodiim (EDC) and N-hydroxysuccinimide (NHS) in different time periods to achieve a proper drug release rate. Fourier-transform infrared (FTIR) spectroscopy was being used to manifest the peaks of polymers and drug in the membrane. Scanning electron microscopy (SEM) was used to evaluate the morphology, fibers diameter, pore size, and porosity before and after crosslinking process. Ultraviolet (UV)-visible spectrophotometry was used to show the ciprofloxacin release from the cross-linked membrane.Results:FTIR analysis showed the characteristic peaks of gelatin, PGS, and ciprofloxacin without any added peaks after the crosslinking process. SEM images revealed that nanofibers’ size increased during the crosslinking process and porosity was higher than 80% before and after crosslinking process. UV-visible spectrophotometry showed the proper rate of ciprofloxacin release occurred from cross-linked membrane that remaining in EDC/NHS ethanol solution for 120 min.Conclusion:The obtained results suggest that this recently developed gelatin/PGS membrane with controlled release of ciprofloxacin could be a promising biodegradable membrane for wound dressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.