Abstract
DNA cloning is the basic step for different fields of life science, and many efforts have been made to simplify this procedure. In this study, we report two general purpose plasmids (pGP), pGP-XB2E and pGP-B2E, for rapid and cost-effective construct of basic clones. The BciVI and XcmI cleavage sites are designed in pGP-XB2E to test plasmid linearization efficiency. The plasmid has better linearization efficiency by using BciVI which could almost completely digest 2μg plasmid in 10min with only one-tenth the recommended enzyme concentration. In order to further optimize the pGP-XB2E, a new plasmid, pGP-B2E, which removed XcmI cleavage site was designed. This vector is highly efficient for cloning PCR products up to 1812bp, and the number of colonies was about five times that of pGP-XB2E. In addition to TA cloning, blunt-end PCR products with T ended in the primer could be positively linked to the T-vector pGP-B2E without A-tailing treatment (TB cloning). Moreover, as an entry vector, pGP-B2E was also compatible for gateway recombination reaction without frameshift mutations. In general, this vector provides a universal, quick, and cost-efficient method for basic molecular cloning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.