Abstract

The effect of the prostaglandin E2 (PGE2) signal through prostaglandin E receptor 2 (EP2) receptors on the repair of injured articular cartilage was investigated using a selective agonist for EP2. Chondral and osteochondral defects were prepared on the rabbit femoral concave in both knee joints, and gelatin containing polylactic-co-glycolic acid microspheres conjugated with or without the EP2 agonist was placed nearby. Animals were sacrificed at 4 or 12 weeks post-operation, and regenerated cartilage tissues and subchondral structure remodeling were evaluated by histological scoring. The quality of regenerated tissues was also evaluated by the immunohistochemical staining of EP2, type II collagen, and proliferating cell nuclear antigen (PCNA). As an evaluation of side effects, the inflammatory reaction of the synovial membrane was analyzed based on histology and the mRNA expression of matrix metalloproteinase3 (MMP3), tissue inhibitor of metalloproteinase 3 (TIMP3), and interleukin-1 beta (IL-1 beta). Also, the activity of MMP3 and the amount of tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein in joint fluid were measured. In both models, the EP2 agonist enhanced the regeneration of the type II collagen-positive tissues containing EP2- and PCNA-positive chondrocytes, and the histological scale of regenerated tissue and subchondral bone was better than that of on the control side, particularly at 12 weeks post-operation. No inflammatory reaction in the synovial membrane was observed, and no induction of pro-inflammatory cytokines was found in joint fluid. Selective stimulation of the PGE2 signal through EP2 receptors by a specific agonist promoted regeneration of cartilage tissues with a physiological osteochondral boundary, suggesting the potential usefulness of this small molecule for the treatment of injured articular cartilages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call