Abstract

One well documented family of enzymes responsible for the proteolytic processes that occur in the extracellular matrix is the soluble and membrane-associated matrix metalloproteinases. Here we present the first theoretical model of the biochemical network describing the proteolysis of collagen I by matrix metalloproteinases 2 (MMP2) and membrane type 1 matrix metalloproteinases (MT1-MMP) in the presence of the tissue inhibitor of metalloproteinases 2 (TIMP2) in a bulk, cell-free, well stirred environment. The model can serve as a tool for describing quantitatively the activation of the MMP2 proenzyme (pro-MMP2), the ectodomain shedding of MT1-MMP, and the collagenolysis arising from both of the enzymes. We show that pro-MMP2 activation, a process that involves a trimer formation of the proenzyme with TIMP2 and MT1-MMP, is suppressed at high inhibitor levels and paradoxically attains maximum only at intermediate TIMP2 concentrations. We also calculate the conditions for which pro-MMP2 activation is maximal. Furthermore we demonstrate that the ectodomain shedding of MT1-MMP can serve as a mechanism controlling the MT1-MMP availability and therefore the pro-MMP2 activation. Finally the proteolytic synergism of MMP2 and MT1-MMP is introduced and described quantitatively. The model provides us a tool to determine the conditions under which the synergism is optimized. Our approach is the first step toward a more complete description of the proteolytic processes that occur in the extracellular matrix and include a wider spectrum of enzymes and substrates as well as naturally occurring or artificial inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.