Abstract
Abstract This paper describes the main features of our parallel-adaptive open-source framework for solving phase-field fracture problems called pfm-cracks . Our program allows for dimension-independent programming in two- and three-dimensional settings. A quasi-monolithic formulation for the coupled two-component system of displacements and a phase-field indicator variable is used. The nonlinear problem is solved with a robust, efficient semi-smooth Newton algorithm. A highlight is adaptive predictor–corrector mesh refinement. The code is fully parallelized and scales to 1000 and more MPI ranks. Illustrative tests demonstrate the current capabilities, from which some are parts of benchmark collections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.