Abstract

Privacy-preserving federated learning is distributed machine learning where multiple collaborators train a model through protected gradients. To achieve robustness to users dropping out, existing practical privacy-preserving federated learning schemes are based on (t, N)-threshold secret sharing. Such schemes rely on a strong assumption to guarantee security: the threshold t must be greater than half of the number of users. The assumption is so rigorous that in some scenarios the schemes may not be appropriate. Motivated by the issue, we first introduce membership proof for federated learning, which leverages cryptographic accumulators to generate membership proofs by accumulating user IDs. The proofs are issued in a public blockchain for users to verify. With membership proof, we propose a privacy-preserving federated learning scheme called PFLM. PFLM releases the assumption of threshold while maintaining the security guarantees. Additionally, we design a result verification algorithm based on a variant of ElGamal encryption to verify the correctness of aggregated results from the cloud server. The verification algorithm is integrated into PFLM as a part. Security analysis in a random oracle model shows that PFLM guarantees privacy against active adversaries. The implementation of PFLM and experiments demonstrate the performance of PFLM in terms of computation and communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.