Abstract
AbstractThe Kuluketage block, located in the northeast Tarim craton, is one of the largest Precambrian blocks in the Xinjiang province. Recently, many banded iron formation (BIF)‐type (Superior‐type) deposits have been discovered in the western part of the Kuluketage block. These deposits occurred in the Paleoproterozoic Shayiti Formation, Xingditage Group, which has a nearly E–W distribution in the southern Xinger and Xingdi faults. Tremolite biotite schist and quartzite are the main wall rocks. The geochemical characteristics of schist indicate that the BIFs occurred in a passive continental margin environment. The LA–ICP–MS zircon 206Pb/238U ages of BIF and late syenite are 1945 ± 10 Ma(MSWD = 0.77) (weighted average age) and 1974 ± 27 Ma(MSWD = 1.05) (upper intercept age), respectively, indicating that the BIFs occurred in the Paleoproterozoic. In addition, the approximately 1.9 Ga magmatic and metamorphic events are consistent with the global‐scale 2.1–1.8 Ga collisional orogen events which are associated with the assembly of the Columbia supercontinent. The geochemical characteristics show that magnetite and quartz are dominant components (total content, 91.65–98.22 wt.%), and the Zr(Nb) and TiO2, Zr(Nb) and Al2O3 and Zr and Y/Ho display strongly positive correlations, illustrating the addition of crustal materials into the chemical precipitate of the original BIFs. The higher Zr, Nb and Al2O3 contents and a lower Y/Ho ratio of the Kuluketage BIFs indicate a higher terrigenous detrital component contaminant compared to BIFs of North China Craton (NCC). The rare earth and yttrium (REY) distribution patterns show a slight LREE enrichment and weak Eu positive anomaly features, indicating that the source of Fe and Si of the Kuluketage BIFs is mainly from the contribution of low‐temperature hydrothermal alteration of the oceanic crust. In addition, along with the decreasing BIF depositional age, the declining of Eu anomaly values reflects the increasing importance of low‐temperature hydrothermal solutions relative to high‐temperature hydrothermal solutions. Moreover, no Ce anomalies in studied BIFs, NCC and Xinyu BIFs are attributed to relative reducing environmental condition when the original BIFs precipitated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have