Abstract

Abstract Determining the mineralogical changes occurring in subducted oceanic crust is key to understanding short- and long-term geochemical cycles. Although numerous studies have explored the mineral assemblages that form in mid-ocean ridge basalt (MORB) at different depths below the Earth’s surface, it is widely recognized that seafloor hydrothermal alteration of the uppermost portion of the oceanic crust can change its composition between a ridge and a trench prior to subduction. In this study, we use petrological modelling to explore the effects of different types of pre-subduction hydrothermal alteration on the phase changes that occur during seafloor alteration of MORB-like compositions during subduction along an average Phanerozoic geotherm. We consider a representative composition of altered oceanic crust, as well as extreme end-member scenarios (pervasive spilitization, chloritization, and epidotization). Our models show that epidotization and chloritization of MORB strongly affects phase equilibria at different depths, whereas spilitization and an average style of alteration produce relatively fewer changes on the mineral assemblage to those expected in a pristine MORB. Devolatilization of MORB during subduction occurs mostly in the forearc region, although the type and extent of alteration strongly control the depth and magnitude of fluid released. Altered compositions carry significantly more H2O to sub- and postarc depths than unaltered compositions; the H2O carrying capacity of unaltered and altered compositions is further enhanced during subduction along colder geotherms. Extremely localized areas affected by epidotization can transport up to 22 times more H2O than unaltered MORB and up to two times more than average altered oceanic crust compositions to depths beyond the arc. Regardless of the extent and style of alteration, the stability of hydrous phases, such as epidote and phengite (important trace element carriers), is expanded to greater pressure and temperature conditions. Thus, hydrothermal alteration of the subducted oceanic slab-top represents a viable, and probably common, mechanism that enhances geochemical recycling between the Earth’s hydrosphere and shallow interior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.