Abstract

High-temperature peridotite massifs occur as lensoid bodies with high-pressure granulites in the southern Bohemian massif. In lower Austria the peridotites comprise garnet lherzolites lacking primary spinel, rare garnet and garnet-spinel harzburgites, and harzburgites containing Cr-rich primary spinel instead of garnet. These phase assemblages suggest initial high-pressure equilibration and are consistent with results from garnet-orthopyroxene geobarometry indicating equilibration at around 3–3.5 GPa. Maximum temperature estimates obtained on core compositions of coexisting minerals from the peridotites are not higher than ca. 1100 °C. In contrast, pyroxene megacryst compositions, garnet exsolution textures in the garnet pyroxenites, and results from geothermometry indicate much higher original equilibration temperatures in most of the pyroxenites (up to 1400 °C). High temperatures, modal zoning, the occasional presence of Mg-rich garnetites and chemical evidence suggest that the pyroxenites are cumulates which crystallized from low-degree melts derived from the sub-lithospheric mantle. Isothermal interpolation of the high temperatures to an upper mantle adiabat suggests that the melts were derived from a minimum depth of 180–200 km. The formation of small garnet II grains and garnet exsolution lamellae in the pyroxenites and pyroxene megacrysts may reflect isobaric cooling of the cumulates from temperatures above 1400 °C to ca. 1100–1200 °C (at 3–3.5 GPa) to approach the ambient lithospheric isotherm. This model differs from other models in which the formation of garnet II was explained by an increase in pressure during cooling in a subduction zone. Isobaric cooling was followed by near-isothermal decompression from 3–3.5 GPa to 1.5–2 GPa at 1000–1200 °C, as indicated by the increase of Al in pyroxenes near garnet. Further cooling in the spinel lherzolite stability field is indicated by spinel exsolution lamellae in pyroxenes from lherzolites. The formation of symplectites and kelyphites indicate sub-millimetre scale re-equilibration during exhumation in the course of the Carboniferous collision in the Bohemian massif. The peridotite massifs represent fragments of normal (non-cratonic) lithospheric mantle from a Paleozoic convergent plate margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call