Abstract
High pressure (HP) granulites of regional scale form as a result of tectonic events that lead to crustal thickening or subduction of the crust into the mantle. Most HP granulites are Phanerozoic, a few are Proterozoic, and Archaean HP granulites are even scarcer. Here we present field relationships, mineral chemistry and zircon U-Pb ages, Hf isotope data and trace elements data for the mafic granulite and associated rocks of the Uauá terrane, São Francisco Craton, Brazil, as evidence for the likely existence of a thick continental crust in the Mesoarchaean/Neoarchaean transition. The HP mafic granulite occurs as lensoid bodies within shallow dipping diorite to leucodiorite gneisses. Small scale layering between mafic granulite and diorite gneiss indicate these rocks are cogenetic. Garnet-clinopyroxene pairs with quartz, zircon, ilmenite, plagioclase, and clinopyroxene inclusions in garnet characterize the HP assemblage. Garnet porphyroblasts also show opx-cpx-plag symplectite coronas, which coupled with hornblende and plagioclase define PT conditions to lower grade granulite and amphibolite facies. Microprobe data combined with phase equilibria modelling (pseudosections) indicate 16–18 kbar and 930–960 °C for the peak HP assemblage, and 6.2–7.0 kbar and 660–760 °C for lower pressure granulite to amphibolite facies symplectite coronas. Metamorphic zircon rims in equilibrium with garnet have SHRIMP ages of 2819 ± 14, and igneous zircon cores of 3127 ± 14 Ma. The cores of zircon in associated gneiss samples have U-Pb ages between 3090 ± 13 Ma (LA-ICP-MS) and 3125 ± 15 Ma (SHRIMP) with age cluster at 3120 ± 6 Ma. εHf(t) values on igneous zircon of the HP mafic granulite are slightly positive whereas metamorphic zircon rims are negative. The associated diorite gneiss invariably yielded negative zircon εHf(t) values. Trondhjemite sheets intrusive in the mafic granulite are ca. 20 m.y. younger (2794 ± 13 Ma) than the host granulite. We interpret the igneous protoliths of the mafic granulite and leucodiorite gneiss as a single igneous complex emplaced in the continental crust, later deformed and metamorphosed by contraction and crustal thickening during collision of blocks/cratons to form Earth's first supercratons by the end of the Mesoarchaean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.