Abstract

The Kab Amiri area in the Central Eastern Desert (CED) of Egypt comprises ophiolitic rocks, island arc metasediments, and granitic rocks. This study deals with the petrography and geochemistry of the ophiolitic and island arc rocks to understand their petrogenesis and geodynamic evolution of the CED ophiolitic belt. The Kab Amiri ophiolite is dismembered, comprising serpentinites and metabasalt (spilite). Serpentinites have low contents of Al2O3 (1.14 wt%) and CaO (0.65 wt%), suggesting they are depleted peridotite protoliths (e.g., depleted harzburgites to dunites). The high L.O.I. value (13.7 wt%) of serpentinite rocks indicates intense hydration and serpentinization during alteration processes. Petrographic and geochemical studies suggest that serpentinites were likely formed after depleted peridotites in a supra-subduction zone (SSZ) setting (e.g., a fore-arc setting). Spilitic basalt shows a tholeiitic affinity of the depleted mantle source. The arc-related metasediments are represented mainly by schists and slate. Many samples of metasediments are relatively low in alumina (Al2O3 < 15%), suggesting a low clay content and formation in an island arc setting. In contrast, protoliths of island-arc metabasalts and meta-andesites crystallized from calc-alkaline magmas in the immature oceanic arcs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call