Abstract

In this paper a special type of nonlinear marking specifications called stair generalized mutual exclusion constraints (stair-GMECs) is defined. A stair-GMEC can be represented by an inequality whose left-hand is a linear combination of floor functions. Stair-GMECs have higher modeling power than classical GMECs and can model legal marking sets that cannot be defined by OR–AND GMECs. We propose two algorithms to enforce a stair-GMEC as a closed-loop net, in which the control structure is composed by a residue counter, remainder counters, and duplicate transitions. We also show that the proposed control structure is maximally permissive since it prevents all and only the illegal trajectories of a plant net. This approach can be applied to both bounded and unbounded nets. Several examples are proposed to illustrate the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.