Abstract

The gasifier is an important component of energy sources. It is a typical nonlinear and coupled multivariable system with strict actuator saturation constraints. To handle with these challenges, an ALSTOM gasifier benchmark problem is proposed for controller design and control performance comparisons. A new control structure combining active disturbance rejection control (ADRC) and an actuator rate limit compensation is proposed for this benchmark problem in this paper. The corresponding design procedures for the proposed control structure are provided. Its superiority over other control structures is verified by extensive simulations and comparative experiments where the proposed control structure is the least sensitive to the rate limit uncertainty. The superiorities of the proposed control structure under the nominal condition and uncertain rate limit conditions are verified for the benchmark problem, where the average control performance indices of the proposed control structure are no more than 90.0% of the comparative control strategy for all loops under the nominal condition and the average ranges of the proposed control structure are no more than 7.0% of the comparative control strategy when the rate limit is perturbed in ±35% of the nominal value. In general, the proposed control structure is able to obtain satisfactory control performance and has a strong ability to handle rate limit uncertainties, while the comparative control strategy cannot guarantee the convergence of the gasifier system. ADRC with actuator rate limit compensation clearly has a great potential in industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.