Abstract

An Intelligent Transport System (ITS) model that is contingent on the compulsion and expertise of the Traffic Prediction System in the contemporary urban context is proposed in this paper. Deep Learning (DL) is computationally becoming comfortable to train and set as many hyperparameters automatically as possible. The researchers and practitioners crave to set as many hyperparameters inevitably as possible in the DL. To be a great enabler, ITS has to find suitable solutions to issues like—alert on live time traffic information to interested parties along with facility to retrieve on demand the long-term statistical data, reduce the middling waiting time for commuters, offer protected, consistent, value-added services, control with vitality the signal timing based on the traffic flow etc., All these limitations call for instant attention. Among all the listed issues the problems like the sharp nonlinearities due to changeovers amid free flow, breakdown, retrieval and congestion. The contributions in this paper are as follows: (i) Adopt an ascendable approach to kindle the scarce information formed; (ii) Exploit the attention mechanism to exterminate the disadvantages of Long Short-Term Memory (LSTM) methods for traffic prediction; (iii) Suggest a new fusion smoothing model; (iv) Investigating, developing, and utilizing the Bayesian contextual bandits; (v) Recommend a Linear model based on LSTM, in combo with Bayesian contextual bandits. The travel speed prediction is done by LSTM. The results authenticate that the proposed model can adeptly achieve the goal of developing a system. The proposed model is definitely the best solution to overcome the issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.