Abstract

Short-term traffic flow prediction plays an important role in intelligent transportation system. Numerous researchers have paid much attention to it in the past decades. However, the performance of traditional traffic flow prediction methods is not satisfactory, for those methods cannot describe the complicated nonlinearity and uncertainty of the traffic flow precisely. Neural networks were used to deal with the issues, but most of them failed to capture the deep features of traffic flow and be sensitive enough to the time-aware traffic flow data. In this paper, we propose a deep bi-directional long short-term memory (DBL) model by introducing long short-term memory (LSTM) recurrent neural network, residual connections, deeply hierarchical networks and bi-directional traffic flow. The proposed model is able to capture the deep features of traffic flow and take full advantage of time-aware traffic flow data. Additionally, we introduce the DBL model, regression layer and dropout training method into a traffic flow prediction architecture. We evaluate the prediction architecture on the dataset from Caltrans Performance Measurement System (PeMS). The experiment results demonstrate that the proposed model for short-term traffic flow prediction obtains high accuracy and generalizes well compared with other models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call