Abstract

Increasing demand for the mobile, low energy systems has laid emphasis on the development of low power processors. Low power design has to be incorporated into fundamental computation units, such as multipliers. The optimization of the energy-delay product in such low power multipliers will enable energy efficient computation. This study proposes a power estimation tool to analyze different array multiplier architectures, which are most commonly used in such applications. Gate level library design parameters are utilized to derive energy-delay performance for any given set of input vector patterns, and multiplier size. Vector and size dependent factors are therefore clearly identified. Examples are provided from carry save array multiplier (CSAM) and ripple carry array multiplier (RCAM) to demonstrate the capabilities for the tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.