Abstract
Cytochrome c oxidase, also known as complex IV, facilitates the transfer of electrons from cytochrome c to molecular oxygen, resulting in the production of ATP. The assembly of complex IV is a tightly regulated and intricate process that entails the coordinated synthesis and integration of subunits encoded by the mitochondria and nucleus into a functional complex. Accurate regulation of translation is crucial for maintaining proper mitochondrial function, and defects in this process can lead to a wide range of mitochondrial disorders and diseases. However, the mechanisms governing mRNA translation by mitoribosomes in mammals remain largely unknown. In this study, we elucidate the critical role of PET117, a chaperone protein involved in complex IV assembly, in the regulation of mitochondria-encoded cytochrome c oxidase 1 (COX1) protein synthesis in human cells. Depletion of PET117 reduced mitochondrial oxygen consumption rate and impaired mitochondrial function. PET117 was found to interact with and stabilize translational activator of COX1 (TACO1) and prevent its ubiquitination. TACO1 overexpression rescued the inhibitory effects on mitochondria caused by PET117 deficiency. These findings provide evidence for a novel PET117-TACO1 axis in the regulation of mitochondrial protein expression, and revealed a previously unknown role of PET117 in human cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.