Abstract

Tumorigenesis is a multistep process marked by variations in numerous metabolic pathways that affect cellular architectures and functions. Cancer cells reprogram their energy metabolism to enable several basic molecular functions, including membrane biosynthesis, receptor regulations, bioenergetics, and redox stress. In recent years, cancer diagnosis and treatment strategies have targeted these specific metabolic changes and the tumor's interactions with its microenvironment. Positron emission tomography (PET) captures all molecular alterations leading to abnormal function and cancer progression. As a result, the development of PET radiotracers increasingly focuses on irregular biological pathways or cells that overexpress receptors that have the potential to function as biomarkers for early diagnosis and treatment measurements as well as research. This chapter reviews both established and evolving PET radiotracers used to image tumor biology. We have also included a few advantages and disadvantages of the routinely used PET radiotracers in cancer imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.