Abstract

Prostate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotracers labeled with a variety of radionuclides for positron emission tomography (PET) imaging applications have been developed and explored in recent studies. A great deal of progress has been made in defining the clinical utility of this class of PET agents through predominantly small and retrospective clinical studies. The most compelling data to date has been in the setting of biochemically recurrent PCa, where PSMA-targeted radiotracers have been found to be superior to conventional imaging and other molecular imaging agents for the detection of locally recurrent and metastatic PCa. Early data, however, suggest that initial lymph node staging before definitive therapy in high-risk primary PCa patients may be limited, although intraoperative guidance may still hold promise. Other examples of potential promising applications for PSMA PET imaging include non-invasive characterization of primary PCa, staging and treatment planning for PSMA-targeted radiotherapeutics, and guidance of focal therapy for oligometastatic disease. However, all of these indications and applications for PCa PSMA PET imaging are still lacking and require large, prospective, systematic clinical trials for validation. Such validation trials are needed and hopefully will be forthcoming as the fields of molecular imaging, urology, radiation oncology and medical oncology continue to define and refine the utility of PSMA-targeted PET imaging to improve the management of PCa patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.