Abstract

ObjectiveThis study inventively combines epidermal growth factor receptor (EGFR) expression of the primary lesion and standardized uptake value (SUV) of positron emission tomography and computed tomography (PET/CT) to predict the prognosis of nasopharyngeal carcinoma (NPC). This study aimed to evaluate the predictive efficacy of maximum standard uptake value (SUVmax) and EGFR for treatment failure in patients with NPC.MethodsThis retrospective study reviewed the results of EGFR expression and pretreatment 18F-FDG PET/CT of 313 patients with NPC. Time-dependent receiver operator characteristics was used for analyzing results and selecting the optimal cutoff values. Cox regression was used to screen out multiple risk factors. Cumulative survival rate was calculated by Kaplan–Meier.ResultsThe selected cutoff value of SUVmax-T was 8.5. The patients were categorized into four groups according to EGFR expression and SUVmax-T. There were significant differences in the 3-year local recurrence-free survival (LRFS) (p = 0.0083), locoregional relapse-free survival (LRRFS) (p = 0.0077), distant metastasis-free survival (DMFS) (p = 0.013), and progression-free survival (PFS) (p = 0.0018) among the four groups. Patients in the EGFR-positive and SUVmax-T > 8.5 group had the worst survival, while patients in the EGFR-negative and SUVmax-T ≤ 8.5 group had the best prognosis. Subsequently, patients with only positive EGFR expression or high SUVmax-T were classified as the middle-risk group. There were also a significant difference in 3-year overall survival among the three risk groups (p = 0.034). SUVmax-T was associated with regional recurrence-free survival and LRRFS in multivariate analysis, whereas EGFR was an independent prognostic factor for LRRFS, DMFS, and PFS.ConclusionThe combination of SUVmax-T and EGFR expression can refine prognosis and indicate clinical therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call