Abstract
Targeted reprogramming of cancer-associated fibroblasts (CAFs) is one of the most essential cancer therapies. However, how to reprogram active CAFs toward deactivated state still remains immense challenge. To tackle this challenge, herein, one perylene N, N'-bis(2-((dimethylammonium)ethylene)-2-(methoxylethyl))-1, 6, 7, 12-tetrachloroperylene-3, 4, 9, 10-tetracarboxylic diimide (PDIC-OC) is prepared, which can trigger endogenous reactive oxygen species (ROS) burst to result in cytoskeletal dysfunction and cell apoptosis so that suppress transforming growth factor β (TGF-β) production. As a result, PDIC-OC can reprogram the activated CAFs and relieve immunosuppressive tumor microenvironment by efficient polarization of M2-typed macrophages into M1-typed ones, downregulation of alpha-smooth muscle actin (α-SMA), alleviation of hypoxic state to promote infiltration of cytotoxic T lymphocytes, and ultimately realizes outstanding antitumor performance on B16F10 tumor-xenografted and lung-metastatic mouse model even at low concentration of 1mg kg-1 body weight. This work thus presents a novel strategy that cytoskeleton dysfunction and cell apoptosis cooperatively suppress the secretion of TGF-β to reprogram CAFs and meanwhile clarifies intrinsic mechanism for perylene-triggered chemo-immunotherapy against hypoxic tumors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have