Abstract

In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.