Abstract

Two donor-acceptor (D-A) 2-dimensional (2D) conjugated polymers P1 and P2 based on isoindigo (ID) and thienoisoindigo (TID) as acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b´]dithiophene (BDT-T) as donor unit were prepared via Stille coupling and characterized by solution-possessed organic field effect transistors (OFETs) and organic solar cells (OSCs), respectively. By changing the electron-withdrawing component of the conjugated polymer backbone from ID to TID, there have also been diversities in the optical absorption, thermal stability, molecular structure, electrochemical energy level, charge mobility and photovoltaic properties of these two polymers. P1 and P2 exhibited intrinsic p-type semiconductor characteristic with hole mobilities of 3.0 × 10−2 and 1.2 × 10−2 cm2 V−1 s−1, respectively. When blended with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), the highest power conversion efficiency (PCE) of P1 and P2 were 2.40% and 1.28%, respectively. Our results suggest that ID and TID units are useful building blocks for the further development of efficient organic optical-electrical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.