Abstract

We consider the minor process of (Hermitian) matrix diffusions with constant diagonal drifts. At any given time, this process is determinantal and we provide an explicit expression for its correlation kernel. This is a measure on the Gelfand–Tsetlin pattern that also appears in a generalization of Warren’s process (Electron. J. Probab. 12:573–590, 2007), in which Brownian motions have level-dependent drifts. Finally, we show that this process arises in a diffusion scaling limit from an interacting particle system in the anisotropic KPZ class in 2+1 dimensions introduced in Borodin and Ferrari (Commun. Math. Phys., 2008). Our results generalize the known results for the zero drift situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.